Sp1 and Sp3 transcription factors are required for trans-activation of the human SERCA2 promoter in cardiomyocytes.
نویسندگان
چکیده
OBJECTIVES The sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA) is essential to the removal of cytosolic calcium following cardiac contraction, and its abundance and activity are significantly altered during perinatal development and in failing myocardium. The objective of the current study was to identify cis regulatory elements and nuclear transcription factors responsible for transactivating SERCA2 gene expression in cardiomyocytes. METHODS Primary cultures of neonatal rat ventricular myocytes were transiently transfected with luciferase (LUX) reporter gene constructs containing deletions of the SERCA2 promoter or which harbored mutations in consensus Sp1 transcription factor binding sites. Cotransfection assays, electrophoretic mobility shift, and supershift assays were also performed to delineate the regulatory role of specific transcription factors. RESULTS We identified a putative AP-1-like element and a consensus Egr-1 binding site, but neither Egr-1 nor 12-O-tetradecanoylphorbol 13-acetate (TPA) significantly modified human SERCA2 promoter activity in vitro. Maximal activity of the SERCA2 promoter required the proximal 177 bp, and strong activation was observed with a 125-bp construct, within which an Sp1 site and a CAAT box were important. Mutation analysis also revealed the importance of two Sp1 sites between -125 and -200. Sp1 and Sp3 transcription factors were subsequently identified to bind to oligonucleotide probes corresponding to only the two most proximal Sp1 sites. CONCLUSIONS These studies provide direct evidence that regulation of human SERCA2 gene expression in cardiomyocytes depends on transactivation events elicited by Sp1 and Sp3 transcription factors.
منابع مشابه
Sp3 inhibits Sp1-mediated activation of the cardiac troponin T promoter and is downregulated during pathological cardiac hypertrophy in vivo.
Combinatorial interactions between cis elements and trans-acting factors are required for regulation of cardiac gene expression during normal cardiac development and pathological cardiac hypertrophy. Sp factors bind GC boxes and are implicated in recruitment and assembly of the basal transcriptional complex. In this study, we show that the cardiac troponin T (cTnT) promoter contains a GC box th...
متن کاملTranscription factor Sp3 antagonizes activation of the ornithine decarboxylase promoter by Sp1.
Ornithine decarboxylase (ODC) expression is important for proliferation and is elevated in many tumor cells. We previously showed that Sp1 is a major positive regulator of ODC transcription. In this paper we have investigated transcriptional regulation of rat ODC by the closely related factor Sp3. While over-expression of Sp1 caused a dramatic activation of the ODC promoter, over-expression of ...
متن کاملTranscriptional regulation of mouse mu opioid receptor gene in neuronal cells by Poly(ADP-ribose) polymerase-1
Previously, the existence of dual promoters was reported in mouse mu-opioid receptor (mor) gene, with mor transcription in the mouse brain predominantly initiated by the proximal promoter. In this study, we further analyzed the proximal promoter region, base pairs -450 to -249, to identify cis-DNA regulatory elements and trans-acting protein factors that are important for mor promoter activity....
متن کاملStability of the Sp3-DNA complex is promoter-specific: Sp3 efficiently competes with Sp1 for binding to promoters containing multiple Sp-sites.
The transcription regulatory protein Sp3 shares more than 90% sequence homology with Sp1 in the DNA-binding domain and they bind to the same cognate DNA-element. However, the transcriptional activities of these two Sp-family factors are not equivalent. While Sp1 functions strictly as a transcriptional activator, Sp3 has been shown to be transcriptionally inactive for promoters containing multip...
متن کاملSp1 and Sp3 transcription factors regulate the basal expression of human microsomal epoxide hydrolase (EPHX1) through interaction with the E1b far upstream promoter.
Microsomal epoxide hydrolase (mEH, EPHX1) is a critical biotransformation enzyme, catalyzing the metabolism of many xenobiotics. Human mEH is transcribed using alternative promoters. The upstream E1 promoter is active in liver while the far upstream E1b promoter drives the expression of mEH in all tissues, including liver. Although several liver-specific transcription factors have been identifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 60 2 شماره
صفحات -
تاریخ انتشار 2003